On tree-partition-width

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On tree-partition-width

A tree-partition of a graph G is a proper partition of its vertex set into ‘bags’, such that identifying the vertices in each bag produces a forest. The tree-partition-width of G is the minimum number of vertices in a bag in a tree-partition of G. An anonymous referee of the paper by Ding and Oporowski [J. Graph Theory, 1995] proved that every graph with tree-width k ≥ 3 and maximum degree ∆ ≥ ...

متن کامل

A Note on Tree-partition-width

A tree-partition of a graph G is a proper partition of its vertex set into ‘bags’, such that identifying the vertices in each bag produces a forest. The treepartition-width of G is the minimum number of vertices in a bag in a tree-partition of G. An anonymous referee of the paper by Ding and Oporowski [J. Graph Theory, 1995] proved that every graph with tree-width k ≥ 3 and maximum degree ∆ ≥ 1...

متن کامل

On Minimum Bisection and Related Partition Problems in Graphs with Bounded Tree Width

Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the number of edges between these two sets. We consider this problem in bounded degree graphs with a given tree decomposition (T,X ) and prove an upper bound for their minimum bisection width in terms of the structure and width of (T,X ). When (T,X ) is provided as ...

متن کامل

A Note on Tree-width Path-width and Cutwidth*

Let tw(G), pw(G), c(G), !J.(G) denote, respectively, the tree-width, path-width, cutwidth and the maximum degree of a graph G on 11 vertices . It is known that c (G)~tw (G). We prove that c (G) =0 (tw (G)·!J.(G)·logn), and if ({Xj : iel] ,T=(I,A» is a tree decomposition of G with tree-wid~ then c (G) S (k+ l)·!J.(G)·c (T). In case that a tree decomposition is given, or that the tree-width is bo...

متن کامل

A note on clique-width and tree-width for structures

We give a simple proof that the straightforward generalisation of clique-width to arbitrary structures can be unbounded on structures of bounded tree-width. This can be corrected by allowing fusion of elements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2009

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2008.11.010